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ABSTRACT 
Technical advances since Apollo make it possible to perform 
robotic reconnaissance to gain a better understanding of lunar sites 
prior to human exploration. NASA is conducting analog field tests 
to investigate these operations concepts with advanced robots and 
simulated flight operations. We have developed robot performance 
monitoring software for use during robotic reconnaissance 
operations. We measure robot performance by monitoring robot 
data in real-time and computing robot performance metrics from 
that data. Metrics are computed for two regimes of flight 
operations – remote supervision of autonomous robot operations 
and debrief support after a flight operations shift. In this paper we 
describe our performance monitoring software, define the metrics 
we compute, discuss how these metrics are used in flight 
operations, and summarize results from recent field tests. 

Categories and Subject Descriptors 
C.4.3 [Performance of Systems]: Measurement techniques, 
Performance attributes, Reliability, availability, and 
serviceability; I1.2.9 [Artificial Intelligence]: Robotics - 
Commercial robots and applications, Operator interfaces 

General Terms 
Algorithms, Measurement, Performance, Experimentation 

Keywords 
Operational performance metrics, robotic recon, space robotics. 

1. INTRODUCTION 
NASA’s plan to return humans to the moon raises questions about 
how to conduct lunar exploration missions to best utilize limited 
crew resources. Technical advances since Apollo enable the use of 
robotic systems to complement the human mission. Improved 
instrumentation makes it possible to perform robotic 
reconnaissance, or “recon”, to gain a better understanding of lunar 
sites prior to human exploration. NASA is conducting analog field 
tests to investigate these operations concepts with advanced robots 
and simulated flight operations [1].  

We define robotic recon as operating a planetary rover under 
ground, or non-EVA astronaut, control to scout planned sorties 

prior to EVA activity. Scouting is an essential phase of field work, 
particularly for geology. Robot instruments provide measurements 
of the surface and subsurface at resolutions and from viewpoints 
not achievable from orbit. This surface-level data can then be used 
to select locations for field work and prioritize targets to improve 
crew productivity. Robotic recon can be done months in advance, 
or be part of a continuing planning process during human 
missions. [1].  

We first began studying robotic recon during the June 2008 NASA 
Human-Robotic System (HRS) project analog field test conducted 
at the Moses Lake Sand Dunes, WA. During this test, an 
experimental ground control team located at the NASA Johnson 
Space Center (JSC) used a K10 planetary robot (Figure 1) to 
remotely scout a portion of the sand dunes. The data collected 
during the reconnaissance was then used to develop a plan for 
crew EVA in the same area. Lessons learned at Moses Lake were 
subsequently used to improve and validate robotic recon systems 
during Operational Readiness Tests (ORT) at the NASA Ames 
Research Center (ARC) in November 2008 and June 2009. Most 
recently, we conducted an experimental assessment of robotic  
recon as part of the 2009 Desert Research and Technology Studies 
(D-RATS) analog field campaign at Black Point Lava Flow, AZ.   

Figure 1. The K10 planetary rover is equipped with three 
instruments for robotic recon: a panoramic imager (PanCam), 
a 3D scanning lidar, and a terrain facing microscopic imager. 
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Figure 2. An experimental ground control for robotic recon 
includes a science operations team and a flight control team. 
The roles and protocols used by this ground control are a 
hybrid of Apollo, Shuttle, Space Station, and MER concepts. 
For these ORTs and field tests, ground control (Figure 2) was 
conducted concurrent with robot surface operations. The Science 
Team builds robot plans to visit features of interest and take 
instrument readings to determine what features would benefit most 
from astronaut Extra-Vehicular Activity (EVA). During robotic 
recon operations, the ground control team reviews robot plans, 
then uplinks them to the robot. Similar to planetary rovers like 
JPL’s Mars Exploration Rover (MER), the K10 robot immediately 
begins to execute the uplinked plan. But, unlike MER, ground 
control supervises the robot as it executes the plan. They 
continuously monitor robot data in real-time and can intervene 
using tele-operations if opportunities or problems arise.  

To help improve the efficiency and effectiveness of robotic recon 
operations, we have developed real-time robot performance 
monitoring software. In the following, we describe our approach, 
define the performance metrics we compute, discuss how these 
metrics are used in robot operations, and summarize results from 
recent field tests.  
 

2. RELATED WORK 
The planetary surface environments in which recon robots must 
operate are highly variable. To maximize the value of the 
reconnaissance, the robot may be required to make observations in 
areas that are difficult to access or traverse. For example during 
the June 2009 ORT at NASA Ames Research Center, the K10 
robot operated near its safety limits to access desired geologic 
features on steep slopes. When communication latencies and 
bandwidth permit, tele-operating the robot in these conditions can 
be preferable to autonomous operations. Thus, robotic recon 
includes autonomous robotic activities interleaved with scheduled 
tele-operation.  

For this operations model, human-robot interaction metrics such as 
interaction efficiency [2] and neglect tolerance [3] are relevant. 
Interaction efficiency is improved by minimizing human 
interaction time. Neglect tolerance is a function of neglect time, 
the average time a robot can be ignored while keeping 
performance above some acceptable level. Larger neglect 

tolerance indicates greater independence in robot operations. We 
apply these metrics a bit differently for robotic recon, however. 
Central to these differences is the distinction between planned and 
unplanned human interaction. 

For lunar reconnaissance operations, minimizing all human 
interaction time may not translate to more efficient robot 
operations. In fact, it may often be more time and resource 
efficient to tele-operate the robot in difficult terrain than to operate 
autonomously. Thus, our objective is to minimize the time spent 
on unplanned interventions (such as anomaly handling).  

To do this, we make use of Mean Time to Intervene (MTTI) [4], 
which is the average time spent handling anomalies that interrupt 
planned robot tasks. Scheduled tele-operations are not included in 
MTTI. We also compute Mean Time Between Interventions 
(MTBI) as the average time between unplanned interventions. 
Similar to neglect time, larger MTBI indicates improved human-
robot performance for reconnaissance.  

We measure the robot’s productivity as a function of the time the 
robot spends on reconnaissance tasks (called productive time). We 
compare productive time to time spent on other tasks (called 
overhead time), such as waiting for a reconnaissance plan or 
handling problems. One metric we use is Work Efficiency Index 
(WEI) [5], which is the ratio of productive time to overhead time. 
We also compute the Percentage of Time on Task as the 
productive time normalized to the total elapsed time in the shift.  

Performance measures used for the MER robots include the total 
traverse distance over the lifetime of the robot [6]. Maximizing 
traverse distance for such exploration is desirable as an indicator 
of increased productive lifespan for the robot. But longer distances 
traveled or drive times do not necessarily correspond to better 
performance during robotic recon. Specifically, some plans may 
have short traverses interleaved with many data collection tasks. In 
such cases the robot may be performing optimally even with 
shorter drive times and less distance traveled.  

During the November 2008 ORT, for example, we observed the 
robot actually traveled greater distances when it was performing 
less well. The longest distance traveled over a shift corresponds to 
more human time spent unexpectedly tele-operating the robot out 
of difficult terrain. Comparing total distance traveled to the 
distance traveled performing planned tasks reveals this important 
distinction. Thus for robotic recon, a better indicator of good 
performance is the minimum distance traveled outside the plan 
instead of the maximum distance traveled.  

Performance measures are more effective for time and resource 
management if good estimates of expected task times and plan 
durations are available. These estimates define expected baseline 
performance useful in interpreting measures computed in real-
time. Such information can be used to assess how efficiently the 
robot accomplished tasks under nominal circumstances and to 
determine what it is feasible to get done in the time remaining 
under contingency conditions.  Algorithms for estimating task 
times can benefit from work on metrics for diagnostic and 
prognostic technologies [7, 8]. Such algorithms address detecting 
problems that can affect the quality of observations, which could 
be useful in pruning abnormal observations from computation of 
typical task times.  
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3. ROBOT PERFORMANCE MEASURES 
 

3.1 Software Approach 
We measure robot performance during reconnaissance operations 
by monitoring robot data in real-time and computing robot 
performance metrics from that data. Robot performance is 
computed remotely for use by flight operations personnel. The 
same robot data stream used for flight operations are used to 
compute performance of the robot in real-time. This includes 
detecting event signatures in data that affect robot performance 
(e.g., robot in motion). Metric values are displayed on web-based 
dashboards and plots for use by flight operations. Figure 3 
illustrates the key components of the performance monitoring 
software.  

 
Figure 3.  Components of Performance Monitoring Software 
 

Metric algorithms are encoded as Java objects. At run-time 
algorithms are selected for execution and associated with robot 
data using configuration files. An instance of the algorithm’s class 
is created for each connection to a robot data item, permitting 
algorithms to be reused across multiple metrics. Complex 
algorithms are composed by connecting sequences of simpler 
algorithms (i.e., the output of one algorithm provides input to 
another algorithm). Computed metrics are distributed via a real-
time data server and displayed as dashboards in a web page. 
Performance history is provided in two ways: plots of metric 
values computed over time and debrief reports of summary metrics 
computed over a shift. 

We evaluated our performance monitoring software during the 
June 2008 HRS field test at Moses Lake Sand Dunes, WA, to 
assess the feasibility of computing robot performance metrics in 
real time [9]. The objectives of this evaluation were to identify 
meaningful robot metrics, to assess whether these metrics can be 
computed using existing robot data, and to determine the impacts 

of remoteness on the computation of robot metrics on Earth. 
Subsequently we supported two ORTs at NASA ARC - one in 
November 2008 and another in early June 2009. During these 
ORTs we observed how performance metrics are used in 
operations. We also assessed how the human team design and 
protocols impact robot performance, such as robot utilization and 
robot wait time.  

Based on the results from these prior tests, we deployed and tested 
a revised system during the robotic recon portion of the 2009 D-
RATS field test at Black Point Lava Flow, AZ. Specifically, we 
computed performance metrics in two time regimes – for use by 
flight controllers during remote real-time flight operations and for 
use during debrief after an operations shift. To support flight 
operations, we also provided web-based dashboard displays of 
performance metrics computed from robot telemetry data. These 
displays were updated automatically with the latest computed 
value for performance measures. To support debrief meetings, we 
took snapshots of metric values at the end of each shift and 
performed additional computations on these values to produce a 
debrief report spanning each shift. The debrief report was 
generated in a web page using the eXtensible Markup Language 
(XML) stylesheets and Javascript. 

3.2 Metrics for Real-time Flight Operations 
To investigate the use of performance metrics during real-time 
operations, we supported two robot ground control positions [1]: 
the Flight Director, who is responsible for managing and 
coordinating the flight control and the Robot Operations 
Coordinator, who is responsible for the health and status of the 
K10 robot. In both cases, metrics are used in real-time for time and 
resource management.  

The Flight Director primarily uses performance metrics to manage 
the use of time. During operations, the Flight Director is concerned 
with whether the robot is operating normally. This includes both 
whether the assigned tasks complete successfully and whether 
these tasks can be accomplished in the allocated time. The 
questions asked by the Flight Director include: How much time 
before an ongoing task is completed? How much time it will take 
to complete the unfinished tasks in the current plan? and How 
much of the time allocated to a plan has been expended so far?  
This becomes particularly important when an anomaly occurs and 
the Flight Director must make choices about whether to abandon 
some tasks.  

To support the Flight Director in assessing and managing the 
timing of task performance, we provided a set of real-time metrics 
that measure how long tasks take and that compare these measures 
to expected performance. Specifically we computed and displayed 
the following five timers: 

1) Plan Timer: The Plan Timer counts down from the expected 
time it will take to complete a plan while the plan is being 
executed. The timer is updated each time an update about plan 
execution status is received until the plan is done. A plan is 
considered done when all tasks are either successful or aborted. 
This timer resets when a new plan is uplinked. The expected time 
is computed by summing the expected time for each planned task. 
Expected times for sampling tasks are based on typical 
performance during the ORT and field test. Expected times for 
traverse tasks are computed for a linear path between waypoints at 
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default robot speed.  The algorithm for the Plan Timer is shown 
below. 

    

2) Plan Wait Timer: The Plan Wait Timer increments when a 
plan is NOT active (i.e., no task is active, paused or pending). This 
includes time spent handling robot anomalies as well as idle time 
waiting for a new plan. This timer resets when a plan completes. 
Thus it measures all the “wait” time between plans. The algorithm 
for the Plan Timer is shown below. 

    

! 

PlanWaitTimer(t) = PlanWaitTimer(t) + dtelapsed

where

x = elapsed time between adjacent timetags

when plan not active

        

3) Lidar Panorama Timer: The Lidar Panorama Timer counts 
down from the expected time it will take to complete a Lidar 
panorama while the lidar is active. The timer is updated each time 
an update about the Lidar subsystem status is received until the 
panorama is complete. This timer resets when a new panorama 
begins. The expected time for the Lidar panorama task is based on 
typical performance during the ORT and field test. The algorithm 
for the Lidar Panorama Timer is shown below. 

    

 

4) PanCam Timer: The Panoramic Camera (PanCam) Timer 
counts up while a PanCam panorama is being taken. For the 2009 
field test at Black Point Lava Flow, there are five different types of 
panorama: (1) Medium Width Image, Low Resolution, (2) 
Medium Width Image, Medium Resolution, (3) Wide Image, Low 
Resolution, (4) Wide Image, Medium Resolution, and (5) Narrow 
Image, High Resolution. Each of these types of panoramas take a 
different amount of time. Since the field test at Black Point Lava 
Flow was the first field test where we have used variable width 
and resolution PanCam imaging, we employ a “count up” timer to 
collect data on typical task times at each resolution. The algorithm 
for the PanCam Timer is shown below.  

      
5) MicroImager Timer:  The MicroImager Timer counts up while 
a MicroImage is being taken. Microimaging takes between 10 and 
20 seconds. Because this task is so short, counting down from 
some expected time was not deemed useful. The algorithm for the 
MicroImage Timer is shown below. 

     

The Robot Operations Coordinator uses “low-level” performance 
metrics to manage robot resources such as remaining battery 
power. Such measures are needed to anticipate when robot 
maintenance is needed. Some batteries on the K10 robot provide 
feedback about remaining capacity and some do not. For batteries 
that are instrumented, we provide displays of the average battery 
capacity for each battery controller. Each controller manages eight 
batteries. For batteries that are not instrumented (such as the Lidar 
battery) we track battery usage (i.e., total runtime of the instrument 
using the battery) to give the Robot Operations Coordinator an 
idea of how much capacity remains. Utilization is tracked 
throughout the shift over multiple sampling intervals.  When a 
Lidar battery is swapped out, we reset Lidar Runt Time. The 
algorithm used for Lidar Run Time is shown below. 

      

Finally we compute data communication quality metrics for use by 
all flight controllers. During the field test at Moses Lake, we 
observed two days with significantly degraded communication. 
The metric for communication quality during this field test was a 
count of the number of times the ground lost communication with 
the remote robot (called a data dropout, or Loss of Signal[LOS]) 
during a support period (for this test we compute a count over the 
shift). Larger dropout counts indicated more data were unavailable 
for computation, potentially impacting the accuracy of metric 
values. The duration of dropouts varied significantly at Moses 
Lake, however, prompting the definition of a second metric to 
compute the percentage of a support period (i.e., shift) that was 
spent without communication. This permits estimating the amount 
of data not available to flight operations and not included in 
metrics computed during real-time operations. The algorithms for 
both these metrics are shown below. 

     
 

     

3.3 Metrics for Shift Debrief 
Operationally, the ground control team holds a debrief meeting 
immediately after each shift (contiguous period of operations). We 
compute performance metrics over the course of each shift for 
building a debrief report. The debrief report has three sections: (1) 
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a robot performance summary, (2) an anomaly summary, and (3) 
an event log. The performance summary provides metrics about 
robot productivity, task breakdown, and data collected during the 
shift. The anomaly summary provides metrics about unplanned 
interventions in robot operations, problems experienced by the 
robot, and loss of communication. The event log interleaves log 
notes by the flight team with events detected automatically in the 
robot telemetry stream.  

Three metrics are computed to assess robot productivity – time 
spent performing planned tasks (called productive time), time 
spent doing activities other than planned tasks (called overhead 
time), and the ratio of these two measures (called Work Efficiency 
Index; [5]). The algorithm used for each of these metrics is shown 
below. 

     
To assess task performance we compute the breakdown across the 
shift of robot drive time, time taking Lidar, time taking each of the 
five types of PanCam, and time microimaging. We also measure 
the number of samples taken by each type of instrument over the 
shift. Finally, we compute the total distance traveled by the robot 
during the shift. The algorithms used for these robot performance 
metrics are shown below. 

    
 

    

 

    
To assess anomalies in robot operations, we detect unplanned 
interventions in robot operations and use them to compute the 
Mean Time To Intervene (MTTI) and the Mean Time Between 
Interventions (MTBI).  We show how many of each type of 
problem intervention occurred during the test, and the percent of 
the shift spent on each type of intervention. We also summarize 
communication quality by measuring the total number of LOS 
periods and the percentage of the shift spent in LOS. The 
algorithms for MTTI and MTBI metrics are shown below. The 
algorithms for communication quality were described previously. 

     

  

    
The event log combines information derived from the robot 
telemetry stream with log entries made by users. Events detected 
automatically include (1) Acquisition of Signal (AOS) and Loss of 
Signal (LOS), (2) instrument sample start and end, (3) problem 
start and end, and (4) plan uplink, start, and end. Problems 
reported include (1) emergency stop, (2) critical failure in robot 
subsystem (locomotor, navigation, or plan executor), (3) joint 
failure, and (4) navigation position error (usually due to a stuck 
wheel). These are problems where intervention by a person is 
likely required to fix the problem. User log entries are made from 
our real-time display. They are timestamped at the time of log 
entry. User log entries are distinguished from detected log entries 
using italics text in the display.  

4. RESULTS 
The performance monitoring software was used by K10 ground 
control during the robotic recon portion of the 2009 D-RATS field 
test at Black Point Lava Flow, AZ. In this section we summarize 
the results from using these metrics during field test operations. 

Instrument timers (Figure 4) were used in a number of ways during 
real-time operations. First, they were used to make better estimates 
of task duration for data acquisition tasks. Accurate estimates of 
the time to acquire the five types of PanCam panoramic images 
and the three types of Lidar scans were not available prior to the 
field test. We averaged sample collection times during operations 
early in the test to determine more accurate estimates. These 
estimates were used by the science team when building plans. 
They also were used by the Flight Director when monitoring robot 
progress.  

 
Figure 4. Example of Lidar Task Timer Display 
 
Second, the elapsed data acquisition time from an instrument timer 
was compared to the expected acquisition time for the sample type 
to determine the time remaining in an acquisition task. The 
medium and high resolution PanCam samples took between 10 and 
17 minutes to perform and the Flight Director frequently used 
these timers to determine time to task completion,  
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Third, the instrument timers were used to detect data acquisition 
problems. These problems were evidenced by a larger than 
expected elapsed time with no indication that a sample had been 
taken (i.e., the sample count did not increase). The Lidar 
instrument had difficulty in completing a panorama on multiple 
occasions due to the extreme thermal conditions and the Lidar 
timer was useful in detecting these problems quickly.  

Finally, the Robot Operations Coordinator used the total Lidar 
runtime to estimate when to swap out the Lidar battery, since 
direct sensing of battery level was not available. During the field 
test we added the ability for the user to reset this timer after a 
battery swap. 

Plan timers were used by the Flight Director to identify the 
currently active task and when it was marked complete or aborted, 
and to determine what type of data was being acquired. The plan 
timers were helpful in determining when a plan had gone beyond 
the allocated time, but did not provide the Flight Director with 
sufficient timing information to detect when plan execution was 
getting behind early enough to take action before the allocated 
time was expended. When plan execution did get behind, the plan 
timer also did not aid the Flight Director in determining whether 
some portion of the remaining tasks might be completed in the 
time left. We developed new metrics during the field test to 
address these needs. Specifically we computed the time needed to 
complete the ongoing task and all pending tasks using estimates of 
task time previously measured. Using this information, the Flight 
Director could assess if adequate time remained and, if not, could 
inspect estimated task times to aid in selecting which remaining 
tasks to perform (a form of contingency re-planning). For the field 
test, this information was provided as a snapshot display from a 
checkpoint of metrics and thus did not update as plan execution 
continued. For future tests, we believe a version of this display that 
updates with progress on the plan would be preferable. Figure 5 
shows an example of the display used during the field test for these 
additional plan timing metrics. 

 
Figure 5. Display of Time Remaining in Plan 17A on June 20 

High environmental temperatures increased the risk of robot 
subsystems overheating during operations. The metrics for battery 
management were used by the Robot Operations Coordinator 
primarily to monitor battery temperature for potential overheating. 
To support this task, we computed the maximum temperature 
observed for each group of eight batteries and compared it to the 
current temperature. The Flight Director felt the thermal 
information currently provided should be supplemented with 
summary metrics of thermal performance, 

Communication quality varied significantly over the course of the 
field test. The average percentage of time spent in LOS for the 
entire field test was 13.4%, and varied from 1% to 38% of the day 
in LOS (Figure 6). Our metric for communication quality defined 
LOS as a dropout of all robot data. It was not uncommon, 
however, to experience dropped data messages without losing all 
robot data.  As a result, the LOS metric is a conservative estimate 
of the quality of communication that can underestimate the impact 
of communication anomalies on data availability and quality of 
metrics. The Flight Director supplemented the LOS metrics with 
the message dropout warnings available for the individual robot 
subsystems to detect degraded communication due to dropped 
messages.  

 
Figure 6. Daily Percentage of Time in LOS for Field Test 
We produced a summary report at the end of each day using the 
metrics computed in real-time. These reports are intended to 
clarify how the robot spent its time, what data were collected, and 
what problems were encountered. These reports also should aid in 
identifying trends in expected robot performance over the field 
test. The summary measures in the debrief report identify how well 
the robot performed its tasks (see Figure 7 for an example of robot 
productivity on June 25) and what problems occur that affect that 
performance (see Figure 8 for an example of robot anomalies on 
June 25). An event log provides the details about what 
circumstances contributed to these summary measures. For 
example, one metric in the anomaly summary is the mean time 
spent by personnel intervening unexpectedly in robot operations. 
The log can be inspected to see exactly when samples were taken 
or when interventions were made. By inspecting adjacent events, 
the user may gain additionally insight into the operation. 

These reports were used as supplements to the console notes taken 
by the flight controllers. Both the Flight Director and Robot 
Operations Coordinator felt these reports would be more useful if 
flight operations personnel could edit them. The types of editing 
mentioned includes removing some data points from metric 
computations and adding comments after operations when 
reviewing and analyzing performance. At the end of the test these 
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reports also represent a mission performance summary of robot 
productivity and robot reliability. 

 
Figure 7. K10 Robot Productivity on June 25 
 

 
Figure 8. K10 Robot Anomalies on June 25 
The average K10 robot productivity for the entire field test at 
Black Point was 37% productive time, 63% overhead time, and an 
average WEI of 0.73. Figure 9 shows these productivity metrics 
computed in real-time for each day of the field test. 

 
Figure 9. Daily K10 Robot Productivity Metrics for Field Test 
We further decomposed robot time into the percentage of time 
spent on each type of task. Figure 10 shows this breakout from 

June 17-26. We eliminated data on June 15-16 because of an error 
in the drive time computation used in real-time for those days. 

 
Figure 10. K10 Robot Task Breakout for the Field Test 

The average MTTI computed in real-time for the entire field test at 
Black Point was 5.6 minutes, ranging from a minimum of 1.6 
minutes to a maximum of 17.9 minutes. The average MTBI was 24 
minutes, ranging from a minimum of 5.5 minutes to a maximum of 
an hour. Figure 11 shows these reliability metrics computed in 
real-time for each day of the field test.  

 
Figure 11.  Daily K10 Robot Reliability for the Field Test 
 

5. CONCLUSIONS  
We have described an approach for in-line computation of robot 
performance metrics to aid human-robot interaction during remote 
operation of robots in space. Results of evaluating our approach 
during recent field tests with the K10 robot indicate real-time 
computation of robot performance can aid both robot operations 
and debrief after operations. 

Plan and task timing metrics were used frequently during 
operations. These metrics were most meaningful when used in the 
context of expectations. Instrument timers were combined with 
knowledge of expected data acquisition times to monitor progress 
on the task and to detect when these task were not collecting data 
as expected. Similarly plan timers were combined with estimates 
of plan duration to monitor progress on the plan and to detect 
when the robot was getting behind. New metrics were identified 
and computed during the field test that compare the time left to 
complete the plan with estimates of the time needed to complete 
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the remaining tasks. This information was used to determine 
whether adequate time remained to complete a plan and, if not, 
which of the remaining tasks should be performed. In all these 
cases, the expected task timing also was computed by the 
performance software. Comparing actual timing to expected 
timing is useful when inspecting performance after the mission as 
well. During the field test we computed the ratio of actual time to 
complete a plan with the estimated time to complete a plan. Using 
this metric we determined that 11 of 20 plans taken to completion 
were performed within the allocated time.  

Operational use of WEI and Percentage of Time on Task to 
measure robot productivity indicates that the Percentage of Time 
on Task is more meaningful in real-time. WEI is difficult to 
interpret for real-time use. When overhead time is very small, WEI 
can be very large (or can be undefined if overhead is zero). The 
meaning of such large numbers is not clear. By normalizing 
productive time to total time in operations (i.e., shift time), the 
Percentage of Time on Task is guaranteed to vary between 0 and 
100, ensuring greater consistency across operations and shifts. 

Communication quality varied significantly over the course of the 
field test, ranging from 1- 38% of daily operations spent out of 
communication. Additionally we observed frequent dropped 
messages that affected data availability and the resulting quality of 
metrics. As a result of this loss of data, we observed small 
inaccuracies in statistics on task durations and data sample counts 
due to communication anomalies. Additional metrics are needed 
that characterize how dropped messages affect data availability. 
The prevalence of dropped messages also indicates that metrics 
computed using this lossy data are subject to error due to missed 
data and could benefit from algorithms that consider the quality of 
the data messages used to compute them. 

6. FUTURE WORK 
Early detection of plan threats give ground control more flexibility 
in re-planning because more time and resource remain than if the 
threat is detected late. Plan threats include getting behind when 
performing a plan, using more resource (such as battery power) 
than planned, or losing robot capability that affects plan 
completion. We plan to investigate metrics for early detection of 
plan threats. For example, can we detect a robot getting behind as 
a divergence between the time remaining in the plan and the time 
needed to complete the plan? 

We also plan to investigate approaches for detecting when dropped 
messages impact quality of metrics. This includes performance 
algorithms that consider the quality of the data messages used to 
compute them.  

We believe the performance data we have computed over multiple 
NASA field tests can be useful for future field tests. It can be used 
to characterize typical robot performance for terrain types or 
specialized operations and thereby improve our interpretation of 
future robot performance (i.e., was this typical robot performance 
for this type of terrain?). It also can be used to establish realistic 
expectations when designing the activities for future field tests. 
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