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planned tasks, independently and jointly. 
When needed, these operators will perform 
manual tasks that aid and complement the 
robot’s tasks. Ground-control teams (in-
cluding scientists and engineers) will moni-
tor the results of these tasks to adjust robot 
plans. To ensure that robots are used effec-
tively for such missions, it is important to 
continuously assess the performance of the 
human-robot team during operations. An 
important aspect of such operations is al-
locating tasks between the robots and their 
human operators.

The ability to !exibly allocate tasks 
among the human-robot team is called ad-
justable autonomy, which has its roots in 
Thomas Sheridan’s work on functional  

allocation between humans and machines.2 
Adjustable autonomy has been used for  
various human-robot operations, includ-
ing physical-structure assembly,3 object 
transportation,4 and rescue operations sup-
port.5 It also has been applied to process 
control6 and spacecraft system control.7 In 
addition, protocols and procedures can be 
!exibly adapted to mission circumstances 
using adjustable autonomy. The levels of 
autonomy can be used to gradually auto-
mate systems typically under manual con-
trol, such as spacecraft systems.8 For the 
robotic "eld test we describe here, rover 
operations were intended to be mostly au-
tonomous. We used adjustable autonomy 
to bring humans into these operations in a 

Future NASA missions will use interactive robots for space exploration, 

including scienti"c discovery, site survey, and mission reconnaissance.  

Effective use of robots for these applications requires new types of remote opera-

tions.1 Earth-based operators will remotely supervise multiple robots performing 
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planned but !exible way by adapt-
ing autonomous protocols to include 
manual operations that improve 
performance.

Performance metrics for adjustable- 
autonomy operations have typically 
measured the degree of robot inde-
pendence from human intervention, 
such as neglect tolerance9 and inter-
action ef"ciency.10 For such opera-
tions models, less human interaction 
is preferred. For NASA robotic oper-
ations, however, minimizing human 
interaction might not translate to bet-
ter human-robot performance. For 
example, it might be more time and 
resource ef"cient to teleoperate the 
robot in dif"cult terrain on a plan-
etary surface than to let the robot 
operate autonomously. Thus, met-
rics are needed to evaluate the team 
productivity and success of opera-
tions that allocate tasks among both 
humans and robots. This article de-
"nes performance metrics for such 
adjustable-autonomy operations and 
presents the results of applying these 
metrics during a recent NASA lunar 
mission simulation.

Robotic Reconnaissance 
Operations
NASA is conducting analog "eld 
tests to investigate operations con-
cepts with advanced robots and sim-
ulated !ight operations. One such 
investigation is the use of advanced 
robots for robotic reconnaissance, 
which involves operating a plane-
tary rover under remote control to 
scout planned sorties prior to astro-
naut extra-vehicular activity (EVA). 
Scouting is an essential phase of "eld 
work, particularly for geology. Robot 
instruments provide surface and sub-
surface measurements at resolutions 
and from viewpoints not achievable 
from orbit. This surface-level data 
can then be used to select locations 
for "eld work and prioritize targets 

to improve astronaut productivity. 
Robotic reconnaissance can be done 
months in advance or be part of a 
continuing planning process during 
human missions.

Since 2008, we have been devel-
oping and evaluating systems, oper-
ational concepts, and protocols for  
robotic reconnaissance.11 To study 
how robotic reconnaissance can ben-
e"t human exploration, we recently 
conducted a "eld test using the NASA 
Ames K10 robot (see Figure 1) at 
Black Point Lava Flow (BPLF), Ari-
zona. During this "eld test, ground 
control was conducted at the NASA 
Ames Research Center concurrent 
with the robot surface operations 
at BPLF. The science team built ro-
bot plans to visit features of interest 
and take instrument readings to de-
termine which features would bene"t 
most from astronaut EVA. During ro-
botic reconnaissance operations, the 
ground-control team reviewed robot 
plans, then uplinked them to the ro-
bot. These plans included tasks for 
the robot to perform autonomously 
as well as tasks to be performed man-
ually by flight controllers remote 
from the robot.

Similar to planetary rovers such 
as JPL’s Mars Exploration Rover 
(MER), the K10 robot immediately 
began to execute the uplinked plan. 
But unlike MER, ground control  
supervised the robot as it executed 
the plan and performed planned 

manual tasks. They continuously mon-
itored robot data in real time and 
could intervene using teleoperations 
when needed.

Nominal operation of the robot 
during reconnaissance activities was 
accomplished using the plan built by 
the science team. The K10 robot at 
BPLF was equipped with three types 
of reconnaissance instruments:

• a downward-pointing microscopic  
imager for surface grain size analysis,

• a panoramic imager using GigaPan  
technology to provide high-resolution 
panoramic views of the site, and

• an Optec 3D Lidar scanner to pro-
vide high-resolution depth informa-
tion with centimeter-scale accuracy 
up to 500 meters as well as terrain 
re!ectance information.

The K10 robot performed the follow-
ing tasks autonomously at BPLF:

• Navigate to a location. The robot 
moved to a designated waypoint 
location. The task was considered 
successful when the robot was 
within some threshold of the way-
point location.

• Take a microimage. The robot took 
an image using the microimaging 
camera. The task was considered 
successful when the image scan 
completed normally.

• Take Lidar. The robot collected 
Lidar data. Four types of Lidar 

Figure 1. The K10 robot. The images on the left and center show the K10 robot’s 
instruments for geology reconnaissance, and the right shows the K10 robot 
operating at Black Point Lava Flow, Arizona.
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subtasks were de"ned for robotic 
reconnaissance, including three sin-
gle scans at low, medium, and high 
resolution and a 360-degree pan-
oramic scan, with a low-resolution 
image scan taken every 30 degrees.

• Take pancam images. The robot 
took a sequence of images with the 
panoramic camera that was subse-
quently stitched into a panoramic 
image. Five types of pancam sub-
tasks were de"ned for robotic re-
connaissance, with image width 
and resolution varying from 6 to 
136 frames per sequence.

Because the plan is intended for use 
by a robot, scheduled manual tasks 
are represented as wait tasks for the 
robot. During a wait task, the robot 
pauses all activities while a remote 
!ight controller takes some action. 
The nature of the manual action is 
not speci"ed in the robot’s plan, but 
it can include manual teleoperation of 
the robot, or manual recon"guration, 
such as changing the rover’s maxi-
mum velocity.

Operators can interrupt the ro-
bot’s execution of the plan by paus-
ing an ongoing task. Once the robot 
is paused, they can manually teleop-
erate it or con"gure an instrument on 
the robot. Such unscheduled manual 
tasks were taken in response to prob-
lems that arose during operations. 
Problems requiring unscheduled man-
ual action at BPLF included manually 
navigating the robot to recover from 
an autonomous navigation problem, 
securing the robot when environmen-
tal changes such as bad weather oc-
curred (called sa"ng), and restarting 
the robot controller in response to 
anomalous behavior. Once the man-
ual task was complete, the execution 
of the plan could be resumed, or the 
plan could be aborted.

These capabilities were used during 
robotic reconnaissance to provide the 
following levels of autonomy when 
executing the plan:

• Autonomous refers to the sched-
uled tasks performed by the robot 
with no human action required. 

All tasks in the robot’s plan were 
executed autonomously except the 
wait tasks.

• Scheduled manual refers to the 
scheduled tasks performed by the 
remote !ight team. Wait tasks are 
the only manual tasks in this plan.

• Unscheduled manual refers to 
manual actions in response to a 
problem arising during the plan’s 
execution. The ongoing task in the 
plan is paused prior to taking the 
manual action. When the action is 
complete, the plan can be resumed 
or aborted.

For the purposes of this study, 
manual actions taken when no plan 
was active are not considered nomi-
nal human-robot operations. As a re-
sult, we do not include such actions 
when measuring performance at these 
levels of autonomy.

Measuring Performance 
with Adjustable Autonomy
Robot performance is measured dur-
ing reconnaissance operations by mon-
itoring robot telemetry and comput-
ing performance metrics in real time 
from that data. The same robot data 
stream used for remote ground oper-
ations is used to compute these met-
rics. Algorithms compute task per-
formance measures from low-level 
data, including how much time the 
robot spends on each type of task and 
whether tasks complete normally. 
The resulting metrics are displayed in 
real time for use by !ight controllers12 
and are archived in XML log "les. 
These log "les are transformed using 
XML Stylesheet Language (XSL) and 
XPath to derive summary statistics 
of daily and mission performance. 
Finally, both the data in the log "les 
and the summary statistics are im-
ported into an Excel spreadsheet 
for presentation as graphical charts. 
Figure 2 summarizes the software  

Figure 2. Software for computing human-robot performance.
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approach for measuring human-robot 
performance.

Metrics algorithms are encoded as 
Java object classes. XML con"gura-
tion "les associate these Java object 
classes with input data and de"ne 
identi"ers for referencing the compu-
tation results. Input to an algorithm 
can be rover telemetry or a reference 
to a computed value. At runtime, 
these XML con"guration "les are 
used to instantiate the speci"ed Java 
objects and link them to rover telem-
etry messages or another algorithm’s 
output. An instance of an algorithm’s 
class is created for each speci"cation 
of input data, permitting algorithms 
to be reused across multiple computa-
tions. Complex algorithms are com-
posed by linking sequences of simpler 
algorithms—that is, one algorithm’s 
output provides input to another al-
gorithm. A computation is performed 
whenever an updated input value is 
received and activation conditions 
are met. For example, to compute the 
total distance a robot has traveled,  
robot-pose messages are passed to an 
algorithm for computing the distance 
between two poses. If the computed 
distance exceeds a threshold intended 
to exclude noisy data, the distance 
value is passed to a second algorithm 
that computes a running sum of these 
distances.

The state of all computed val-
ues can be saved during execution 
to a data log "le in XML format. 
For the "eld test at BPLF, we saved 
log "les at the end of each plan and 
at the end of each shift. The results 
we describe here are based on those 
log "les. We used the logs created in 
real time because they are computed  
remotely from the robot and thus in-
clude statistics about data communi-
cation quality between the robot and 
ground control, such as the amount 
of time remote controllers were out of 
communication with the robot. These 

statistics provide important context 
for interpreting robot actions—for 
example, we might need to abort a 
plan due to an extended period with 
loss of signal (LOS).

For the robotic reconnaissance op-
eration model, the role of manual 
intervention is to improve the rov-
er’s ability to execute plans success-
fully and collect the desired data in 
a timely and effective manner. To 
measure plan success, we compare 
the number of assigned tasks that are 
completed successfully with the num-
ber of tasks attempted but failed and 
the number of tasks abandoned. This 
comparison indicates the progress on 
mission objectives and the ability to 
complete assigned tasks. To measure 
team productivity, we compute the 
percentage of the work period spent 
doing tasks that achieve mission ob-
jectives (called productive time) and 
compare it to the time spent doing 
unplanned activities or doing nothing 
(called overhead time). For both these 
metrics, larger numbers indicate bet-
ter performance. To measure team 
workload, we compute the percent-
age of the productive time spent at 
the levels of autonomy on each kind 
of task.

These metrics are not unique to  
human-robot operations with ad-
justable autonomy. We chose them 
because they represent a measur-
able performance baseline for the 
human-robot team that can be com-
puted in real time and used dur-
ing operations as well as compared 
across operational periods and mis-
sions. More speci"cally, we measured 
performance using the following 
algorithms.

Plan State
Plan state is a qualitative assessment 
of the robot’s progress on plan execu-
tion. Although four states are possi-
ble, only one state is true at any point 

in time: plan uploaded to robot, in 
plan executing, in plan idle, and out 
of plan. These states are computed 
from the execution status of the tasks 
in the plan whenever an updated sta-
tus is received.
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where plan(ti) is the robot plan at 
time ti, task(j, ti) is the ordinal task 
j in plan(ti), and status(j, ti) is the ex-
ecution status of task(j, ti). Enumer-
ated task status values are failure ! 0, 
successful " 0, executing " #1, paused " 
#2, and pending " #3.

Task Times
The time spent performing a task be-
gins to accumulate when the corre-
sponding subsystem goes active and 
continues to accumulate until the 
subsystem goes inactive. A running 
sum of these task times for each type 
of robot task is computed over the 
shift.

DriveTime( ) end( ) start( )t t ti
i

i= −
=
∑
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where tstart(i) is the time when the lo-
comotor or navigator goes active, 
tend(i) is the time when the locomotor 
or navigator goes inactive, and tend(i) ! 
tstart(i).

InstrumentRunTime( ) end( ) start( )t t ti
i

i= −
=
∑

1

where tstart(i) is the time when the in-
strument subsystem goes active, tend(i) 
is the time when the instrument sub-
system goes inactive, and tend(i) ! 
tstart(i).

The value of the task time is updated 
when the corresponding subsystem  
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goes inactive. We compute task time 
for the Lidar, pancan, and micro-
imager instruments.

Time in Autonomous Operations
The time the robot spends operat-
ing autonomously is computed by  
summing the time intervals when  
the PlanState is in_plan_exec and 
the active task is not a manual task 
(that is, the task kind is not #1). This 
time is updated when a contiguous 
phase of autonomous operations 
ends.

TimeInAutoOps( ) end( ) start( )t t ti
i

i= −
=
∑

1

where kind(task(j, tk)) is the type of 
task j at tk and #1 corresponds to a 
wait task, 

tstart(i) is the time when PlanState(tk) " 
in_plan_exec $ kind(task(j, tk)) % #1,

tend(i) is the time when PlanState(tk) % 
in_plan_exec & kind(task(j, tk)) " #1,

and tend(i) ! tstart(i).

Time in Scheduled  
Manual Operations
The time a person spends perform-
ing scheduled manual tasks is com-
puted by summing the time intervals 
when the PlanState equals in_plan_
exec and the active task is designated 
a manual task (that is, the task kind  
is #1). This time is updated when a 
contiguous phase of scheduled man-
ual operations ends.
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where kind(task(j, tk)) is the type of 
task j at tk and #1 corresponds to a 
wait task,

tstart(i) is the time when PlanState(tk) " 
in_plan_exec $ kind(task(j, tk)) % #1,

tend(i) is the time when PlanState(tk) % 
in_plan_exec & kind(task(j, tk)) % #1,

and tend(i) ! tstart(i).

Time in Unscheduled  
Manual Operations
The time a !ight controller spends 
performing unscheduled manual op-
erations is computed by summing the 
time intervals when a task in the ro-
bot’s plan is paused. This approach 
ignores the time spent taking manual 
action outside the plan.

 
TimeInUnschedManualOps( )

end( ) star

t

t ti
i

= −
=
∑

1
tt( )i

where status(j, tk) is the execution sta-
tus of task j at tk and #2 corresponds 
to a pause status, 

tstart(i) is the time when 'j : status(j, tk) " 
#2, tend(i) is the time when (j : 
)status(j, tk) " #2,

and tend(i) ! tstart(i).

This algorithm was used for consis-
tency with our de"nition of nominal 
operations being structured by the plan.

Team Productivity
The productivity of the human- 
robot team is measured as the per-
centage of operations time spent by 
the robot and !ight control team op-
erating within the plan at some level  
of autonomy. Productive time—time 
spent directly accomplishing mission  
objectives—is measured as the sum of 
the time spent in autonomous, sched-
uled manual, and unscheduled man-
ual operations:
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Overhead time is de"ned as the 
time doing activities other than tasks 
in the plan and, thus, time spent 
without progress on mission objec-
tives. This includes the time when the 
rover has no plan, the plan is inac-
tive, or the robot is waiting to start a 
plan that has been uploaded.

Task Success
The ability of the human-robot team 
to complete assigned tasks indicates 
the team’s progress on achieving mis-
sion objectives. We measure the per-
centage of assigned tasks completed 
successfully:
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Field Test Results
The protocol for human intervention 
in autonomous robotic operations at 
the beginning of the BPLF "eld test 
was to monitor for situations where 
intervention was needed and to in-
tervene reactively with the goal of re-
turning to autonomous operation as 
soon as possible. When quick emer-
gency response was needed, the rover 
was emergency stopped (an EStop). If 
time permitted, the plan was paused 
while the ground operator took man-
ual action.

Over the course of the "eld test, 
protocols for planned human inter-
vention evolved from best practice. 
These protocols used adjustable au-
tonomy to reduce risks to the robot 
(robot safety) and to improve the 
likelihood of mission success. For ex-
ample, scheduled manual operations 
were used in areas with terrain that 
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either represented a safety threat to 
the robot or that slowed the robot 
signi"cantly when performed auton-
omously. For this protocol, the ro-
bot would automatically navigate to 
a location near the dif"cult terrain 
(such as steep ledges or very rocky 
surfaces). The ground operator would 
then manually control the robot’s 
camera to visually select a site for 
imaging and teleoperate the robot to 
move it to the desired location. When 
out of the dif"cult area, autonomous 
operations would resume.

Flight controllers also used ad-
justable autonomy to develop work-
around protocols during the "eld test 
when full autonomy was not possible. 
For example, it was planned to keep 
the Lidar powered up throughout the 
day and take Lidar scans as speci"ed 
in the plan. However, during the "eld 
test, the Lidar instrument was sen-
sitive to high temperature and tended 
to overheat at BPLF if left running 
throughout operations. The work-
around developed during the "eld 
test was to constrain the amount of 
time that the Lidar was powered up 
to minimize the chance of overheat-
ing. Since the Lidar instrument did 
not support autonomous power-up 
and shut down for this test, a sched-
uled manual operation was required 
to power-up and shut down the in-
strument. In the short run, this use of 
adjustable autonomy let Lidar data be 
collected on high temperature days, 
which would have been impossible 
following the original operational 
protocol. It also points out a long-
term need to adapt the Lidar instru-
ment to support more autonomous 
operation. Without this !exibility, 
Lidar data would not have been col-
lected on two of the three days K10 
operated in the north region of BPLF. 

The objective of measuring team 
performance during robotic recon-
naissance was to characterize typical 

performance for operations using ad-
justable autonomy. For the "eld test, 
this performance baseline consists 
of mission averages for team pro-
ductivity (Figure 3a), team workload  
(Figure 3b), and task success (Figure 3c).

Team Productivity
The average team productivity for the 
"eld test was 39 percent of the total 
operating time spent in productive ac-
tivities and 61 percent spent in over-
head. Productive time consisted of 
34 percent of the autonomous oper-
ating period, and 5 percent manual. 
The robot spent nearly twice as long 
in overhead as in productive time, in-
dicating a need to improve robot uti-
lization. Overhead time consisted of 
34 percent out of plan, 22 percent 
inactive in a plan handling anoma-
lies, and 5 percent waiting to start 
an uploaded plan. Because the robot 
had no plan available to execute for a 
third of the operating time, one way 
to improve robot utilization would 
be to reduce the time to generate new 
plans. The remaining portion of the 
overhead time was spent either wait-
ing to start an uploaded plan or han-
dling anomalies that suspended the 
plan. Figure 3a summarizes the per-
centage of time the robot and !ight 
control team spent in productive and 
overhead activities for the entire "eld 
test.

Team Workload
A signi"cant percentage of the pro-
ductive time (85 percent) was spent 
in autonomous operations, indicat-
ing the robot was able to perform as-
signed tasks independently most of 
the time. The types of autonomous 
tasks include driving to data collec-
tion sites and taking Lidar measure-
ments, pancam pictures, or micro-
images (MI). The largest percentage 
of productive time (39 percent) was 
spent taking pancam, and the smallest  

percentage of productive time (3 per-
cent) was spent taking MI. Manual 
operations were performed only 5 
percent of the total operating time, 
or 15 percent of the productive time. 
Scheduled manual operations were 
done on seven of the 10 days of op-
eration, corresponding to 4.3 percent  
of the total operations time and  
12 percent of the productive time. 
Such planned intervention was suc-
cessful 75 percent of the time, indi-
cating that the manual protocols used 
at BPLF were effective.

Unscheduled manual operations 
were performed on three days, corre-
sponding to an average of 1.2 percent 
of the total operations time and 3 
percent of the productive time. These 
unplanned interventions were suc-
cessful 40 percent of the time, consis-
tent with the reactive nature of these 
tasks.

Figure 3b shows the average team 
workload during the "eld test.

Task Success
The ability of the human-robot team 
to accomplish tasks is measured as 
the percentage of assigned tasks that 
are completed successfully. On av-
erage for the "eld test, the human- 
robot team successfully completed a 
signi"cant percentage of the planned 
tasks (72 percent). Of the remain-
ing 28 percent of the tasks, 2 percent 
were attempted but not completed 
and 26 percent were never attempted. 
This corresponded to completing 324 
of 449 tasks and aborting 115 tasks 
before they were started. Only 10 
tasks were attempted but not com-
pleted. Attempting but not complet-
ing a task reduces team effectiveness 
because time is expended without 
achieving the intended task objec-
tive. Tasks might never be attempted  
because they cannot be performed or be-
cause they are contingent upon what 
was observed during earlier tasks. 
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Figure 3c summarizes the average 
progress made on planned tasks by 
the human-robot team for the "eld 
test.

The daily averages for team pro-
ductivity and task success indicate 
that human-robot performance at 
BPLF was highly variable. The mini-
mum team productivity and task suc-
cess occurred on 19 June. With 5.4 
percent productivity, the daily pro-
ductivity was 34 percent below the 
average for the "eld test. Only 7.7 
percent of planned tasks were com-
pleted successfully this day, more 

than 60 percent below the average for 
the "eld test.

The highest productivity of 64.9 
percent was observed on 25 June. 
This is signi"cantly more than the av-
erage productive time of 39 percent 
for the "eld test. The maximum ob-
served task success was 100 percent 
on 16 and 26 June. Tables 1 through 
3 summarize the average, minimum, 
and maximum values for daily pro-
ductive time, overhead time, and task 
success measures.

The environment at BPLF impacted 
the ability to perform tasks and  

contributed to the high percentage 
of time spent in overhead (61 percent 
average overhead for the "eld test). 
Three types of environmental effects 
were observed during the "eld test: 
bad weather, high temperatures, and 
challenging terrain. Generally these 
environmental effects increased the 
time spent inactive in the plan or  
the time out of plan.

The terrain was particularly dif-
"cult to traverse on 18 and 20 June. 
On these days, the robot spent  
between 45 and 55 percent of its time 
with an inactive plan. This is more 

Figure 3. Field-test results for the Black Point Lava Flow, Arizona. We measured the (a) average team productivity (15–26 June), 
(b) average team workload (17–26 June), and (c) average task success (15–26 June) while testing the K10 robot.
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than twice the amount of time spent 
with an inactive plan on the remain-
ing days of the "eld test (ranging 
from 4 to 17 percent).

Physical location was also cor-
related to degraded communica-
tion quality, which signi"cantly re-
duced team productivity. The time 
in LOS ranged from 20 to 40 percent 
from 18 to 22 June, when operating 
in the western area of BPLF. Corre-
spondingly, the percentage of produc-
tive time on all four days was below 
average.

T he team performance was mea-
sured during robotic recon-

naissance both to characterize the 
typical performance for such opera-
tions and to detect departures from 
typical performance. The mission av-
erages computed during the "eld test 
at BPLF for task success, team pro-
ductivity, and team workload rep-
resent a step toward establishing a 
performance baseline. Because per-
formance measures are computed in 
real time, they can be compared to 
this baseline to identify degraded per-
formance during operations and to 
determine the performance effects of 
adjusting operational protocols. Fu-
ture mission planning could also use 
this baseline to establish performance 
expectations.

Equally important is characterizing 
the circumstances that can degrade 
team performance from this baseline. 
This includes both identifying the con-
ditions causing the degradation and 
determining how frequently these con-
ditions occur. Conditions at BPLF that 
reduced team productivity included 
dif"cult terrain and bad weather as 
well as delays in the availability of 
plans from the science team (the rover 
spent an average of 24 minutes wait-
ing for a plan). High temperatures  
impacted the ability to complete  

operations such as Lidar tasks. The 
most signi"cant impact to operations 
at BPLF was poor communication 
quality. Overhead time increased by 
up to 35 percent when time in LOS 
exceeded 20 percent. Such degraded 
communication quality occurred 
when operating in the western area 
of the BPLF. This indicates a need to 
revisit protocols for robot autonomy 
during periods of poor communica-
tion to investigate robot utilization 
when out of communication with the 
ground team.

The novel aspect of our approach 
is that metric values are computed 
inline while the team is perform-
ing activities, which makes them 
available for use during operations. 
Comparing current performance to 
typical performance can help detect 
anomalies requiring an operational 
change or workaround. For exam-
ple, more frequent reactive interven-
tions by the ground team can indi-
cate a need to change an autonomous 
protocol. Inline processing of met-
rics also eliminates the signi"cant 

task of postprocessing the terabytes 
of data collected during a mission 
to compute summaries of mission 
performance.

A challenge in automating the com-
putation of performance metrics is 
determining when to compute metric 
values. The operational events that 
provide this context for computation 
are often more complex than the met-
rics algorithms. Part of this complex-
ity arises from missing information, 
requiring that important context be 
deduced from patterns in telemetry. 
For example, the K10 rover does not 
have telemetry indicating when it is 
being teleoperated. This must be in-
ferred by monitoring for patterns of 
robot motion when there is no au-
tonomous task causing that motion. 
Part of this complexity results from 
the need to handle data imprecision. 
For example, the K10 robot’s mo-
tion can be detected by monitoring 
changes in robot pose. To accurately 
determine when the rover is in mo-
tion, however, it is necessary to look 
for changes in pose that exceed the 

Table 1. Daily productive time.

Productive time (PT) Average (%) Minimum (%) Maximum (%)

Auto operations 34 2.7 57.5

Scheduled manual 4 0 11.6

Unscheduled manual 1 0 4.8

Total PT 39 5.4 64.9

Table 2. Daily overhead time.

Overhead time (OT) Average (%) Minimum (%) Maximum (%)

Out of plan 34 11.7 86.6

In plan inactive 22 0.6 51.5

Wait start plan 5 0.3 9.7

Total OT 61 35.0 95.0

Table 3. Daily task success.

Task success Average (%) Minimum (%) Maximum (%)

Tasks completed 72 7.7 100

Tasks failed 2 0 40.0

Tasks abandoned 26 0 88.5
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noise level on the data. And part of 
this complexity results from inconsis-
tent operations. That is, a K10 plan 
is considered done when there is no 
task executing, paused, or pending. 
The protocol for aborting a plan is to 
abort the remaining tasks within the 
plan. It is possible, however, to sim-
ply uplink and start a new plan with-
out following this protocol. Thus, to 
accurately detect the end of a plan, it 
is necessary to monitor for a plan up-
link as well as the status of tasks in 
the current plan.

For this study, overhead time is 
characterized with respect to the  
science plan—time spent waiting to 
start a plan, suspended within an ac-
tive plan, or outside of the plan. Bet-
ter algorithms are needed for mea-
suring what the human-robot team is 
doing during overhead time. An im-
proved understanding of the activi-
ties conducting during overhead time 
should help us identify ways to re-
duce the overhead time. In particular, 
techniques are necessary for track-
ing the robot’s manual operation out-
side the plan, including techniques 
to determine when the robot is being 
teleoperated and whether the teleop-
eration originates at the test site or  
remotely.
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