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 Exosphere Introduction 
 LCROSS Plume Gas Results 
 LAMP Helium Detection 
 LAMP Horizon Glow Dust and Other Upper Limits 
 Volatile Transport 
 LAMP and its PSR Viewing Technique 
 LAMP Porosity Diagnostic and Results 
 LAMP Detections of Surface Water Frost in PSRs 
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 Lunar Reconnaissance Orbiter 
 Sub-surface, surface, & PSR water 

signatures (Boyton/LEND Wed., 
Siegler Wed., Bussey Thurs., Hendrix 
Thurs.; Hurley Thurs.; Hibbitts Thurs.) 

 LCROSS plume gas and thermal 
response 

 Lunar helium exosphere (Feldman 
today) 

 Galactic cosmic ray interactions 
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Exciting times for lunar exosphere and surface volatile studies! 

 LADEE 
 Gas, Ions, & Dust (Delory today, 

Horanyi Wed.) 
 

 

 ARTEMIS 
 Plasma & Fields (Halekas today, 

Sarantos today; Samad poster) 

 Richness of International 
Mission Collaborations 

 Ground-based observing 
(Killen today; Morgan poster, 
Oliversen poster) 

 Earth-based observing - IBEX 
energetic neutral atoms, 
ROSAT X-ray (Collier poster) 

 Laboratory studies (Poston 
Thurs.) 

 NLSI focused research (e.g., 
Farrell Thurs.) 

 Comparative Planetology – 
Mercury, Outer Planet 
Satellites, Small bodies, etc. 



 Sources 
 Sputtering 
 Impact Vaporization 
 Photon Stimulated Desorption 
 Diffusion from Sub-surface 
 Other Assorted:  Comets/impactors (e.g., 

LCROSS), landers, astronauts, etc.  
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 Solar wind, meteoritic, 
and internal outgassing 
sources inherently variable 

 Surface temperature-
based thermalization 
(diurnal, latitudinal, PSRs) 

 Losses by photoionization, 
thermal escape, radiation 
pressure 

 Lifetimes of exospheric 
particles balance source 
and loss timescales, 
ranging from hours to 
days 
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• LAMP’s LCROSS light curves are a rich data set for 
constraining detailed plume models 
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• LAMP Detected Five Gaseous Species   
– H2 & CO fluorescence emissions from 105-165 nm (T=1000 K)  
– Neutral atomic Hg at 185 nm w/ contributions from Ca and Mg 
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H2 at ~0 km/s 

2 km/s 

4 km/s 

Hurley et al. JGR 2012 Simulated 130-170 nm Time Series 

We’ve learned that water is just one of many 
interesting volatile species collecting in the PSRs - 
H2 is surprisingly abundant 

LAMP Data 

f(H2)~66% 
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Argon and other constituents may be 
concentrated near the dawn terminator 
and poles.  
Sodium and other constituents may be 
concentrated near the sub-solar point. 
Helium surface density enhanced on 
nightside by thermal accommodation. 

Sodium Corona Image: 
Potter et al., JGR, 1998, 
Viewed at 51° lunar phase 

Argon 
distribution: 
Hodges et al., 
The Moon, 
1975 
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 Search for Ar and He in atmosphere 
 Search for H and O signatures of sub-

surface water outgassing near the lunar 
poles 

 Search for signatures of carbon-bearing 
volatiles, e.g., CO 

 Search for H2 in lunar atmosphere to 
confirm that solar wind protons are 
converted to molecules in surface 

 Search for ionospheric constituents, e.g., 
O+ and C+ 

 Search for localized outgassing near likely 
sites, e.g., Ina; will require targeted 
observations for detailed study 

 Search for transient volatiles associated 
with meteor showers, magnetotail crossings 

 Constrain exospheric dust column 
abundances through forward scattering 
horizon glow observations 

LAMP Slit 
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Dedicated LRO limb-pointings probed 
tangential columns across the poles 
(black) and sky background (red) when 
pointed zenith at equator.  The near-
moon He is their difference (blue). 

Lunar He Signal 

 First remote detections, first since the Apollo LACE 
discovery of helium; Stern et al., GRL, 2012 

Observation 
Date 

Net He 58.4nm 
Brightness 

29 Nov 2011 2.5±1.1 R 

06 Dec 2011 3.4±1.2 R 
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 Variations in lunar helium are now also observed with LAMP and 
show strong correlations with the solar wind, confirming long-
standing theory.  
 A clear decrease is observed during passages into the Earth’s magnetotail; 

Feldman et al., submitted to Icarus, 2012 (and talk today at 4:00). 
 Models show correlations with thermal release from the dayside surface (red 

points); Hurley et al. in prep. 
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 Glenar et al., NLSF, 2011 
 LAMP lunar horizon glow 

searches constrain dust 
abundances 



 Consider 1D vertical 
dust models 

 Mie scattering 

  Apply LRO 
observing geometries, 
with 5 km tangent 
height 

 Equate dust signal 
with LAMP noise-
equivalent radiances: 
      < 0.05 R 
      < 0.08 R 
 

Assumptions: 

Å-1 

Å-1 



 LAMP is providing new upper limits for several gas 
species – the search continues 

 Argon is a puzzle – LAMP should be sensitive to LACE 
measured densities, despite limited instrument 
sensitivity at 104.8 nm (more to come at DPS, AGU) 

 H, H2, H2O gas constituents have diagnostic spectral 
features in the FUV 
 Neutral atomic H gas emissions would be faint (~0.5 R) and are 

difficult to separate from sky background Lyman-α (~500 R)  
 H2 and H2O gas are important lunar species, but are at low 

densities compared to relevant cross-sections for fluorescence 
or absorption – LAMP data is currently not constraining 

 Focus instead on FUV surface reflectance diagnostics for key 
water group volatiles 
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 Use interplanetary medium (IPM) Lyα (along with UV 
starlight) as a source of illumination to look at the lunar 
nightside and permanently shadowed regions (PSRs) 

 The IPM illumination is about the same both inside and 
outside of PSRs, so any observed differences must be due to 
chemistry (i.e., composition) or physics (i.e., soil structure) 
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 At 121.6 nm, the night sky glows in Lyα light from H atoms passing 
through the solar system – the interplanetary medium (IPM) 

 Compared to direct sunlight it would be like twilight on an overcast day 
 Starlight is another (~20x fainter) illumination source we exploit 17 

 

Stars & IPM Lyα 

IPM Lyα alone 



 Lab measured water frost reflectance shows a distinct broad UV 
absorption band or “cut off” in reflectivity at ~160-180 nm  

 LAMP searches for this spectral signature of water ice in PSR albedo 
measurements covering 57-196 nm 
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Lab 

Model 
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South Pole North Pole 

• PSRs have substantially darker FUV albedos than their surroundings 
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South Pole North Pole 

• Relatively noisy (starlight is a very faint source of illumination!) 
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Diviner Model Annual Average T(K) 

25 50 75 100 125 150 175 200 

• Darker FUV albedos are well-correlated with colder temperatures 

LAMP South Pole 
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LAMP South Pole 

• FUV PSR albedos show some agreement with epithermal neutron 
suppression regions 

LEND South Pole Neutron Suppression 
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• Gladstone et al. 2012 calculated using the Shkuratov et al. (1999) average Moon 
optical constants and the Mishchenko et al. (1999) radiative transfer code 
• Same particle size distribution as used by Goguen et al. 2011 to fit visible lunar 
photometry 

Plane Albedo 
Reflectivity (sub-solar) 
Spherical (Bond) Albedo 
Est. Spherical Albedo 
Single Scattering 

Useful simulation for 
relative comparisons 
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• Gladstone et al. 2012 calculated using the Shkuratov et al. (1999) 
average Moon optical constants and the Hapke (2008) approximation 
• Same particle size distribution as used by Goguen et al. 2011 to fit 
visible lunar photometry 

0.02 Lower Albedo ~ 
0.4 Higher Porosity, 
Good Explanation for 
FUV Dark PSRs 
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South Pole North Pole 

• PSRs are not all the same! (e.g., Shackleton is relatively bright)  
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• PSR Lyα albedo generally lower than surroundings ⇒ higher porosity 
• Substantial increase in PSR albedo at longer wavelengths is consistent 
with presence of volatiles. But is it H2O? Possibly ~1% surface frost 

Lyα Stellar On-band Stellar Off-band 
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• Similar results for Faustini; lower Lyα albedo consistent with “fluffy” 
PSRs (P~0.7), higher albedo at longer FUV wavelengths consistent with 
~1% surface frost   

Lyα Stellar On-band Stellar Off-band 
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• In contrast, Shoemaker, although fluffy (i.e., low Lyα albedo), shows no 
large albedo increase at longer FUV wavelengths ⇒ no surface frost (at 
most ~0.3%, challenging to reconcile with LEND neutron result) 

Lyα Stellar On-band Stellar Off-band 
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LAMP provides the first indications of 
surface water frost in permanently 
shadowed polar craters 

LAMP’s nightside Lyman-α maps show 
lower albedos (dark blue), consistent 
with higher porosity surfaces.   

Comparisons of star-illuminated surfaces 
at FUV wavelengths with a diagnostic 
water spectral signature (shortward and 
longward of 160 nm) indicate that PSRs 
such as Haworth crater (inset) are best 
explained by 1-2% abundances of water 
frost right at the surface. 
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   South     North 

 Lyman-α nightside albedo maps of the poles at ~240 m × 240 m per pixel 
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   South     North 

        No sunlit features are found to have albedos as low as the PSRs 
See also Hendrix talk Thurs.   



 LAMP is mapping out and searching for exposed water ice in 
permanently shadowed regions at the poles 

 LAMP uses a spectral “fingerprint” for water ice that can identify 
exposed water ice on the surface 

 LAMP-observed low Lyα albedos suggests high porosity or “fluffiness” 
(P~0.7) in most permanently shadowed regions (PSRs) 

 LAMP-observed reddening at longer FUV wavelengths suggests 1-2% 
surface water frost in several PSRs 

 LAMP detected a response to the LCROSS impact that we’ve identified 
as H2 and CO molecular fluorescence emission and resonantly 
scattered Hg, Mg, and Ca neutral atom emission 

 LAMP remotely senses the global helium exosphere and its variability 

 LAMP continues to study how water and other volatiles are formed 
and are transported through the lunar atmosphere 
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 LRO/LAMP plans to capitalize and expand upon these recent 
discoveries in the Extended Science Mission proposed through Sept. 
2014. 

 Need more FUV data at a variety of incident and emission angles to 
improve signal, spectral, and photometric quality and further 
develop LAMP’s innovative nightside observing technique. 

 Target UV-interesting regions and focus on key PSRs identified by 
LRO/LEND, and Mini-RF as potentially water rich. 

 Global searches of FUV water signatures will continue outside of 
PSRs, following Hendrix et al., submitted to JGR, 2012 – a 
compliment to infrared water/hydroxyl measurements.  
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• Shackleton shows similar results as for Haworth and Faustini; lower Lyα 
albedo consistent with “fluffy” PSRs (P~0.7), higher albedo at longer FUV 
wavelengths consistent with ~2% surface frost 

Lyα Stellar On-band Stellar Off-band 
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