Heads or Tails...

![Image of a coin flip]

You Win.

Get

High Power and Wide Field with Ranger & Pronto.

* I wanted an extremely portable instrument of superb quality. I considered Pronto to be the Quintessence of refinement. It is of superb manufacture and the views are razor sharp with beautiful contrast. — J.B. AZ

* I really like the RP3Drive14 flexed design. And, Pronto was within budget. I'm very pleased! Not only could I see the shadow deep into the telescope (at 95x), but I could trace its way across the planet's dark disk — even in front of a lighter band of clouds. Thanks again. — B.O. B.

* I'm impressed. Ranger performs as a larger aperture telescope. A star test revealed perfect diffraction pattern. — A.C. TX

* Great optics, great machining. Spectacular low-power views; seems much larger than 70mm, lots of detail on high power Jupiter. — P.K. NY

* I needed a grab and go scope with gas. Ranger is an outstanding instrument! My 8" can't keep up with this rival — N.R. NE

* I need portability; to carry on flights - (airline crew). Pronto is a beautiful scope; my first look at Jupiter and Saturn convinced me I had made the right choice. Thank you. — P.H. Hong Kong

TELE VUE RANGER & PRONTO

MOUNTAIN OPTICS

nonical Needs from Beginners to Advanced

BINOCULAR SPECIALS

- Fujinon 7x25 WP 95.00
- Nikon 7x35 FC 125.00
- Canon 7x35 199.95
- Leica 10x32 269.95
- Pentax 10x32 229.95
- Bresser 10x50 159.00
- Vixen 10x50 229.95
- Meade 10x50 165.00
- Minox 10x50 180.00
- Jumilux 10x50 180.00
- Swarovski 10x50 495.00
- Bower 10x50 109.95
- Nicholson 10x50 179.95
- Eagle 10x50 159.00
- Opticron 10x50 149.95
- Carson 10x50 149.00
- Barska 10x50 69.95
- Delta 10x50 99.95
- telescope (binoculars) 159.00

LOOKING IN COMFORT

STAR-JOY

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited

TREND w/Basis

33.00

|| Bases are available!

MEDICAL VISIONS

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited

EDMOND SCIENTIFIC

ASTROSCAN 2000

108.00

JUNIPER 490

45.00

COMPUTER SOFTWARE

"THE GO" by Software Tubes

- $69.95

- $89.95

EYEPIECE SPECIALS!

- **Desert Storm**
 - **6x**
 - **8x**
 - **10x**
 - **12x**
 - **15x**

NEW ACCESSORIES FOR UNIT

- **Mosaic Mount with a high motor**
 - **20x**
 - **40x**
 - **60x**
 - **80x**

159.00

Dealer inquiries invited

CELESTRON

OCTAVE REFLECTORS

- **100mm**
 - **150mm**
 - **200mm**

Telin 7000

STAR-JOY

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited

QUESTAR

NEW SYSTEMS

- **AstroBeam**
 - **155**

- **Kits**
 - **100mm**
 - **150mm**
 - **200mm**

BOOK & STAR CHARTS

- **Star Maps**
 - **100,000 Stars**
 - **250,000 Stars**

ASTRO SYSTEMS

SPECIAL SALE

- **Prime Focus**
 - **300mm**
 - **350mm**

ASTROBEAM

SPECIAL PRICE

- **$155**

TELE KIT

TELE KIT

- **$155**

PRODUCTS

- **$155**

TELEVIEW

OCTAVE REFLECTORS

- **100mm**
 - **150mm**
 - **200mm**

Telin 7000

STAR-JOY

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited

TELEVIEW

OCTAVE REFLECTORS

- **100mm**
 - **150mm**
 - **200mm**

Telin 7000

STAR-JOY

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited

TELEVIEW

OCTAVE REFLECTORS

- **100mm**
 - **150mm**
 - **200mm**

Telin 7000

STAR-JOY

VIEWING CHAIR

- Portable
- Adjustable from 9" to 32"
- Padded Seat
- Porcelain Black Powder Coated

159.00

Dealer inquiries invited
Earth has it.

Mars might have it.

What are the chances for life elsewhere in the solar system?

Confined to a layer barely one-thousandth of the Earth's diameter, our planet's biosphere is the home of an extraordinarily diverse range of organisms. Through long cycles of extinction and diversification, billions of species have evolved since life first appeared on Earth. But beyond the sketchy outline provided by the fossil record, many questions remain unanswered about the history of life.

What were the conditions here at the time life arose? Did life begin by seeding from elsewhere or develop from processes limited to the Earth? How did simple organic compounds organize themselves into the complex metabolic systems of living organisms?

Might we realistically expect conditions suitable for the origin and evolution of life to exist on other planets in our own solar system or in planetary systems now being discovered around other stars?

In short, are we alone in the cosmos, or, as Nobel Prize–winning chemist Christian de Duve suggests, is life a "cosmic imperative," the inevitable outcome of cosmic evolution? These are key questions facing astrobiologists, a newly coined name for researchers who seek to understand the origin and distribution of life in the universe. In this article we will explore some possible answers to these questions, by highlighting new discoveries in this exciting field.

The early history of the Earth was a time of intense bombardment, as the raw materials of the solar system were swept up by gravity to form the proto-planets. It was during this period, about 4.5 billion years ago, that the Moon formed, probably by the catastrophic collision of a Mars-size object with the primitive Earth. The Moon, Mercury, and Mars record this cataclysmic period in their cratered surfaces, which indicate the heavy bombardment lasted until about 3.8 billion years ago. The primitive, impact-riddled surfaces of these objects have been altered little since then. Venus and Earth, however, have been nearly completely reshaped by geologic events—Venus by extensive volcanism and Earth by plate tectonics, weathering, and erosion by water.

On Earth, the early impact history probably had both beneficial and detrimental effects on the beginnings of life. During heavy bombardment, most of the water and many of the volatile biogenic elements (carbon, nitrogen, phosphorus, and other raw materials for life) were vaporized and lost from the accreting planet. The biogenic elements necessary for the development of life were most likely added later, by moderate-size comets, just as the planet cooled down enough to retain them. In addition to water and biogenic elements, it is possible that these late icy impacts contributed simple precursor organic compounds needed to originate life (S&T: March 1994, page 36). Estimates indicate that the very early Earth could have accreted as much as 10,000 tons of organic matter per year. Even today, the Earth routinely collects more than 300 tons of organic material per year from space.

A stable supply of liquid water at a temperature less than 100° Celsius (the boiling point of fresh water at sea level) would have been necessary to allow complex organic molecules to form. We think these environmental conditions for the origin of life could have been present on Earth between 4.2 and 4.4 billion years ago—the time when the heavy bombardment began to decline. Certainly life was well established by 3.5 billion years ago, the age of the oldest fossils. Recent chemical evidence suggests that life may have been present as early as 3.9 billion years ago.

An important control on the habitability of planets in the inner solar system was the energy output of the young Sun. There are good reasons to believe that during this early period the Sun was 25 to 30 percent dimmer then it is today. On the early Earth, because of an atmosphere rich in carbon dioxide, the effect of the faint young Sun was likely offset by a mild atmospheric greenhouse effect that trapped the heat given off by the planet and kept surface temperatures within what is termed the habitable zone, where liquid water is stable. An interesting consequence of

By Yvonne J. Pendleton and Jack D. Farmer

Although far from the Sun, some icy satellites of the outer solar system could also support life. Tidal flexing of the moons may heat their interiors to the melting point of water. These Galileo views of Europa, Jupiter's smallest Galilean satellite, suggest that subsurface water has oozed out to fill cracks with dark ice that is perhaps rich in organic material. Courtesy NASA/JPL.
the cooler young Sun is that the habitable zone may have also extended inward to encompass neighboring Venus.

WATER ON VENUS?
The present surface of Venus is obscured by sulfuric acid clouds suspended in a thick atmosphere of carbon dioxide. Using radar, the Magellan spacecraft penetrated the clouds and returned high-resolution images of the ground. These striking views show a surface almost completely reshaped by extensive eruptions of what are considered to be some of the most unusual volcanoes in the solar system.

Although the Venusian surface is exceedingly hot and dry today, we have indirect signs that water was once present as vapor in the atmosphere and may have even been abundant enough to form oceans. A basic tool used to sketch out the past climate history of Venus is isotopes, species of an element that have slightly different masses because they have gained or lost neutrons from the nucleus. Many natural processes select one isotope over another during chemical reactions, and this results in changes in the relative isotopic abundance. Such differences comprise fingerprints for particular chemical reactions and can be used to infer past conditions.

During the Pioneer missions in the late 1970s orbiting spacecraft measured deuterium, an isotope of hydrogen, in the upper atmosphere of Venus. The ratio of deuterium to normal hydrogen revealed that this is enriched in the heavy iso- tope more than 150 times relative to Earth. This indicates that a substantial amount of lighter hydrogen was lost to space over time. Most recently, we believe that as the Sun gradually increased its energy output, hydrogen was split from water molecules and dissipated into space. As volcanic activity continued, carbon dioxide was outgassed into the atmosphere, trapping the Sun's energy and creating a runaway greenhouse effect that raised the surface temperature to its present 457° C.

Thus it is quite possible that water was abundant on Venus early in its history and life could have initiated there as well. Venus wasn't always enshrouded in clouds. Early in its history Venus may have resembled Miranda Earth, with oceans of water that allowed a foothold for primitive life. The buildup of greenhouse gases, however, ended any chance of further development. This view of the planet's clouds was taken by the Venus Pioneer Orbiter in January 1979. Courtesy NASA Ames.

However, if life developed on our sister planet it surely would have been extinguished by the Sun's energy output increased, turning the climate of Venus into a heatwave. Unfortunately, the rock record of these early events has probably been lost due to the extensive volcanism and tec- tonism that have since reshaped the surface. But Venus is not the only place in the inner solar system, outside of Earth, that could have harbored environments for life. Mars may have spent much of its early history within the habitable zone and may yet host liquid water beneath its frosty mantle.

EXPLORING FOR MARTIAN LIFE
In 1976 the Viking missions placed two landers on Mars' surface to search for evidence of living organisms. Their biology experiments approached the question in several ways. The most basic was simply to search for organic molecules within the red soil. This provided the most disappointing result because not a single carbon compound was detected, even though the instruments could have spotted organic molecules at a concentration of one in a billion. Other experiments sought signs of metabolic activity as water and nutrients were added to soil samples. Although some interesting results were obtained during the experiments, they have all since been explained by inorganic processes.

This is perhaps not surprising given that the atmospheric pressure on Mars is less than 1 percent of that on Earth, far too low for liquid water to exist. In addition, there is no oxygen in the atmosphere and therefore no protective ozone layer to shield the surface from damaging ultraviolet radiation. The strong ultraviolet light received by the surface has no doubt been an important factor in produc- ing the red, heavily oxidized surface of Mars. The resulting peroxides in the soil are highly destructive to organic compounds.

The scientific consensus that has emerged since Viking is that the surface of Mars today is likely barren of life, though habitable zones of liquid water could exist deep beneath the surface, where heat and pressure are sufficiently high. One important challenge for future exploration will be to gain access to subsurface environments by deep drilling, an activity that may require human presence.

Pictures from Viking's orbiters and their Mariner predecessors revealed that the southern highlands and the margins of terrains of Mars were extensively channeled by running water long ago. Thus, as the Viking landers were spelling doom for present-day surface life, orbital mapping opened up new possibilities in the search for ancient Martian life.

From the standpoint of habitability, the climate history of Mars was just the reverse of that of Venus. As the red planet may have started out comparatively warm, today it is in continual deep freeze. This seems counter to what we expect given the increase in solar luminosity that resulted in stronger sunlight reaching Mars. But this is where another important factor, namely atmospheric evolution, enters the picture.

On Mars an early dense atmosphere of carbon dioxide and possibly other greenhouse gases kept surface temperatures high enough for liquid water to persist aboveground even during the faint Sun period. Water vapor was mixed with carbon dioxide combined with the rocks of the crust to form weathering products, atmospheric pressure declined. On Earth, similar atmospheric losses are counterbalanced by the recycling of the crust into the mantle and the release of gases into the atmosphere during volcanic eruptions. Because Mars lacks such a cycle and volcanic activity there is much more dynamic than Earth's, no comparable mechanism existed to replenish the atmosphere after it trapped in carbonate minerals formed as water-bearing fluids percolated through fractures in crustal rocks, perhaps as early as 3.6 billion years ago. Then some 16 million years ago, ALH 84001 was ejected into space by an impact and eventually found its way to Earth, falling on the Antarctic ice sheet toward the end of the last ice age about 13,000 years ago.

We cannot yet say with certainty that the PAMs found in ALH 84001 indicate the past existence of Martain life, nor whether they are merely contami- nants from Earth. These and related issues are cur- rently being studied by a host of researchers. If they are shown to be indigenous to the meteorite, their presence im- plies that complex organic compounds prevailed in the Martian crust.

Unlike Venus, there are extensive tracts of ancient crust preserved on Mars, making it a more prob- able candidate for a fossil record. In fact, given the Earth's age (4.56 billion years) of ALH 84001, the cratered highlands are likely to contain a record of almost all the evolution of the planet. Information about prebiotic chemistry, however, is crucial for understanding the origin of terrestrial life, may be as important as a discovery of Martian life itself. For this reason, many scientists want to return to the red planet to explore for signatures of past life, an endeavor just renewed with launches of the Mars (Global Surveyor or- biters and Pathfinder landers).

Hydrothermal environments have been identified as key places for the early evolu- tion of life on Earth—and possibly even for life's origin. Such conditions are likely to have been much more widespread early in the history of the solar system, when the crust was hotter and volcanism more prevalent. Interest in the "universal zone" that has been constructed by comparing the genetic sequences of living organisms suggests that the last common ancestor of terrestrial life was a sulfur-loving microbe that lived at high temperatures. Good analogs for these conditions today are sul- fide-bearing hydrothermal vents, or "black
similarly cratered highlands of Mars, areas that date back to the early element period when liquid water was present.

Furthermore, to drill into the Martian crust to look for possible life-bearing zones of liquid water, we need high-resolution orbital surveys to locate concentrations of water vapor or hydrothermal gases in the atmosphere, where ground water may be close to the surface.

The return of samples to Earth from such sites will help further our search for prebiotic chemistry or fossils. However, planetary protection is an important concern. We must prepare safe methods for sample handling and quarantine to ensure against the release of foreign organisms into Earth’s biosphere. These preparations are currently under way and involve the entire international community, but we will still have a lot to accomplish before we bring Martian samples back to Earth.

IN THE OUTER SOLAR SYSTEM

The habitable-zone story is quite different for the outer solar system, where the warmth needed to provide regions of liquid water depends less on the Sun’s energy and more on the frictional heating of planetary interiors by gravitational forces and the decay of radioactive elements. Liquid water may well be present inside some icy satellites of the Jovian planets, where tidal forces stretch and distort the crust, causing frictional heating above the melting point.

Perhaps the most visible manifestation of this tidal phenomenon is the Galilean satellite Io, which is unquestionably the most volcanically active object in our solar system. Its interior constantly erupts molten sulfur as the gravitational attraction of Jupiter and its other moons tug and flexes it. Io can hardly be considered a demented place for life, but its ice-covered neighbors Europa and Ganymede may have more propitious conditions. The surface of Europa is smooth and virtually free of impact craters, suggesting it is constantly renewed by active interior processes. Spectacular images recently obtained by the Galileo spacecraft reveal complex crustal fractures edged by darker material (June issue, page 14). The pictures show fractures of differing ages crossing one another, large regions of the crust broken up into blocks, and places where ridges have been offset along faults or rotated. Some blocks appear to be “floating” like icebergs in terrain of smoother ice. There are even signs of younger ice flows spilling out from below, obscuring the older surface features.

While scientists debate how these features formed, one exciting proposition is that dark organic or mineral-rich ice results when liquid water from a subterranean ocean is brought to the surface by induced heating of the interior — wells up between diverging plates of ice. There are still many unanswered questions, but this opens the intriguing possibility that an organic-rich ocean lies below.

Where there is liquid water and the right mix of organic molecules, there may be life. Some researchers even suggest that hydrothermal vents (may also exist on the floor of a Huygens ocean) on Titan on Earth, places team with microbial life and are able to sustain communities of interesting chemistry. Perhaps the same will prove true for Europa! If not, we may someday find that the ice contains evidence of prebiotic chemistry or even fossilized biology from long ago.

Ganymede is almost half water by mass. Similar to Europa, it is covered by an icy crust that has been caved and cấues that Rifted mountain ranges cross the surface of Ganymede for hundreds of kilometers, testimony to a past history of tectonic activity. Could Ganymede also harbor interior or zones of liquid water where chemical evolution may have led to some form of life? Similar questions can be asked of Enceladus, one of Saturn’s moons, and Neptune’s moon Triton, which also shows signs of an active interior.

The outer planets and their moons may also provide important natural laboratories for understanding the chemical evolution that led to life on Earth.
NEW LUMICON MULTIPLE FILTER SELECTOR

$129

ALWAYS GET THE BEST VIEW!

The new LUMICON Multiple Filter Selector holds up to 5 1¼" LUMICON filters. The sliding bar has a click-stop at each filter position. Now you can instantly select the best filter for any deep-sky object. Cost is $129 or $185 with 1.5X relay lens (for Newtonians).

Save $30 if ordered with filter(s)!

NEW! ENHANCED ALUMINUM DIAGONAL MIRRORS BOOST TELESCOPE PERFORMANCE

LUMICON 1.3" & 2.1" enhanced aluminum diagonal mirrors & 1¼" star diagonal.

The new LUMICON diagonal mirrors have a special enhanced aluminum coating with a protective overcoating for long life. Visible reflectivity is 94-96% compared to 86-90% for standard aluminum coated mirrors. The extra 5-10% transmission is like adding up to an inch of aperture.

1½ 132° $39.50 1.52" $45.00 1.83" $59.50 2.14" $59.50 2.60" $75.00 3.10" $95.00

ENHANCED ALUMINUM STAR DIAGONAL

90° star diagonals with 96% reflectivity enhanced aluminum mirrors in a CNC machined black anodized aluminum body. Performance far exceeds prisms diagonals.

1¼" (132°) mirror $99.50

2¼" (180°) mirror (free above) $185.00

NEW LUMICON FILTERS — BEST IN THE WORLD!

"The LUMICON O-III filter is a must have for me... It gave the galaxies an amazing contrast."

ASTRONOMY, February 1991

AMAZING O-III FILTER

Helix Nebula, NGC 7293 in Aquarius. Bright and enhanced by LUMICON Oxygen-III filter.

GREATLY ENHANCED DETAIL

"Consistently performed well on all emission and planetary objects... Its detail and structure were better enhanced in the more than two dozen objects I viewed with TELESCOPES.

TELESCOPE, July 1995

BEETTER THAN A DARK-SKY SITE?

"From my light polluted backyard, the view was better than with any other filter. With the O-III filter the view was even better than without the filter from a dark-sky site." SKY & TELESCOPE, 1995

SEE THE HORSEHEAD

"The LUMICON O-III filter will show subtle features in emission nebulae that the others fail to reveal. It can be the difference between Horsehead and Calvina nebulae." SKY & TELESCOPE, July 1995

"0.96" LUMICON DEEP-SKY FILTER thread fits most 0.96" eyepieces

1¼" LUMICON DEEP-SKY FILTER thread fits most 1¼" eyepieces

48mm LUMICON DEEP-SKY FILTER (1.75" aperture) thread fits most 2" eyepieces. Also fits LUMICON EASYGUIDERS.

LUMICON DEEP-SKY FILTERS — BEST FOR ASTROPHOTOGRAPHY!

"Stunning is all I can say." noted astrophotographer Jack Newton. Great for both color and black and white photography.

NEW WIDE-BAND FILTER!

"Based on our tests we recommend a LUMICON Deep-Sky and Oxygen-III as complementary filters. The LUMICON Deep-Sky Filter clearly had the best contrast for reflection nebulae." ASTRONOMY, February 1991

DEEP-SKY FILTERTM

SR-V 3200 NEW FILM

WHAT DO YOU NEED?

1. Illuminated reticle eyepiece... $109.50

Lumicon 10mm eyepiece system has adjustable LED illumination through the eyepiece.

2. Cable release for long exposures... $9.95

3. Declination motor (state telescope type) $109

4. Dual-axis drive controller for telescope. This is the most advanced motor when purchased through the telescope manufacturer. Call Lumicon for details.

5. LUMICON EASYGUIDER (selection to left)...

6. LUMICON 48mm DEEP-SKY FILTER $199.50

This is the eyepiece filter for Deep-Sky work. Contrast is boosted up to 3X for both color and black & white photography. The 48mm eyepieces are identical to the 48mm eyepiece filter. LUMICON 48mm eyepieces have the same field of view as the 48mm eyepiece filter. LUMICON eyepiece filters are an economical way to improve your eyepiece and telescope performance.

HYPERSENSITIZED FILTER, Purchase from LUMICON or make your own with a LUMICON FILTER KIT.

TRY PPF! HYPERSENSITIZED FILTER KIT

HYPERFILM IS 2X-10X FASTER!

LUMICON Hypersensitized film is essential for the best possible photography. LUMICON Hypersensitized film is available for 3 or more rolls (molded O.C.). No C.O.D.

Film Type: 35mm

GPK-400 = BEST SENSITIVITY

GPK-400 = BEST SENSITIVITY

0.5X 0.5X

Kodak PPF-400... $14.95

0.5X 0.5X

Kodak PPF-400... $14.95

0.5X 0.5X

Kodak PPF-400... $14.95

Kodak GPP-100... $14.95

Fujichrome RDP100... $14.95